GENERALIZED OUANTIFIERS AND COMPACT LOGIC

BY

SAHARON SHELAH

ABSTRACT. We solve a problem of Friedman by showing the existence of a logic stronger than first-order logic even for countable models, but still satisfying the general compactness theorem, assuming e.g. the existence of a weakly compact cardinal. We also discuss several kinds of generalized quantifiers.

Introduction. We assume the reader is acquainted with Lindström's articles [Li 1] and [Li 2] where he defined "abstract logic" and showed in this framework simple characterizations of first-order logic. For example, it is the only logic satisfying the compactness theorem and the downward Löwenheim-Skolem theorem. Later this was rediscovered by Friedman [Fr 1]; and Barwise [Ba 1] dealt with characterization of infinitary languages.

Keisler asked the following question:

(1) Is there a compact logic (i.e., a logic satisfying the compactness theorem) stronger than first-order logic? It should be mentioned that it is known for many $L(Q_{\aleph_{\alpha}})$ that they satisfy the λ -compactness theorem for $\lambda < \aleph_{\alpha}$ (for $\alpha > 0$). $(Q_{\aleph_{\alpha}}(x) \Leftrightarrow \text{there are } \geqslant \aleph_{\alpha} x$'s; the λ -compactness theorem says that if T is a theory in $L(Q_{\aleph_{\alpha}})$, $|T| \leq \lambda$, and for all finite $t \subseteq T$ there is a model, then T has a model.) For example, this is the case for $\alpha = 1$. See Fuhrken [Fu 1], Keisler [Ke 2] and see [CK] for general information.

At the Cambridge summer conference of 1971 Friedman asked:

(2) Is there a logic satisfying the compactness theorem, or even the \aleph_0 -compactness theorem, which is stronger than first-order logic even for *countable* models, i.e., is there a sentence ψ in the logic such that there is no first order sentence φ such that for all countable models $M, M \models \psi \iff M \models \varphi$?

Notice that the power quantifiers $Q_{\aleph_{\alpha}}$ do not satisfy the second part of (2). The quantifier saying " $\varphi(x, y)$ is an ordering with cofinality \aleph_1 " solves (1) (but obviously not (2)) as proved, in fact in [Sh 2, §4.4] and noticed by me in Cambridge.

The main result of this paper is the presentation in §1 of an example solving both (1) and (2) positively (assuming the existence of a weakly compact cardinal); thus, compactness alone does not characterize first-order logic. In §2 we mention

all kinds of problems about generalized second-order quantifiers, and prove some results.

After the solution Friedman asked:

(3) Is there a compact logic, stronger than first-order logic even for finite models?

Notation. λ , μ , κ , χ designate cardinals; i, j, k, l, α , β , γ , δ , ξ designate ordinals; and m, n are natural numbers. The power of A is |A|. Models are M, N, and the universe of M is |M|. a, b, c are elements; \overline{a} , \overline{b} , \overline{c} finite sequences of elements; $l(\overline{a})$ is the length of the sequence \overline{a} . x, y, z, v will be variables, and \overline{x} , \overline{y} , \overline{z} , \overline{v} sequences of variables.

1. A compact logic different from first-order logic. The following theorem is proven under the assumption of the existence of a weakly compact cardinal (see Silver [Si 1]).

THEOREM 1.1. (There is a weakly compact cardinal κ .) There is a compact logic L^* , which is stronger than first-order logic even for countable models.

DEFINITION 1.1. cf(A, <), the cofinality of the ordering < on the set A, is the first cardinal λ such that there exists $B \subseteq A$, $|B| = \lambda$, B is unbounded from above in A. $cf^*(A, <)$ is cf(A, >), > the reverse order. When < is understood we just write cf(A) or $cf^*(A)$. It is easy to see that the cofinality is a regular cardinal (or 0 or 1).

DEFINITION 1.2. (A_1, A_2) is a Dedekind cut of the ordered set (A, <) (or just cut for short) if $A_1 \cup A_2 = A$; $b_1 \in A_1 \land b_2 \in A_2 \longrightarrow b_1 < b_2$; $b < b_1 \in A_1 \longrightarrow b \in A_1$.

DEFINITION 1.3. Let C be a class of regular cardinals. We shall define two generalized quantifiers $(Q_C^{cf}x, y)$ and $(Q_C^{dc}x, y)$:

- (A) $M \models (Q_C^{cf}x, y)\varphi(x, y; \overline{a}) \iff$ the relation $x < y \equiv_{def} \varphi(x, y; \overline{a})$ linearly orders $A = \{b \in M: M \models (\exists x)\varphi(x, b; \overline{a})\}$ and $cf(A, <) \in C$.
- (B) $M \models (Q_C^{dc}x, y)\varphi(x, y; \overline{a}) \iff$ the relation $x < y \equiv_{def} \varphi(x, y; \overline{a})$ linearly orders $A = \{b \in M: M \models (\exists x)\varphi(x, b; \overline{a})\}$ and there is a Dedekind cut (A_1, A_2) of (A, <) such that $cf(A_1, <), cf^*(A_2, <) \in C$. Clearly the syntax of $L(Q_C^{cf}, Q_C^{dc})$, the logic obtained by adding the two generalized quantifiers to first-order logic, is not dependent on C.

DEFINITION 1.4. $L^* = L(Q^{cf}_{\{\aleph_0,\kappa\}}, Q^{dc}_{\{\aleph_0,\kappa\}})$ where κ is the first weakly compact cardinal. In the following we shall omit writing $\{\aleph_0, \kappa\}$.

LEMMA 1.2. L^* is stronger than L for countable models.

PROOF. We must find a sentence $\psi \in L^*$ for which there is no $\psi' \in L$ such that for every countable model $M, M \models \psi \iff M \models \psi'$.

Let $\psi = [<$ is a linear order] \wedge [every element has an immediate follower and an immediate predecessor] $\wedge \neg (Q^{dc}x, y)(x < y)$.

Clearly a countable order satisfies ψ iff it is isomorphic to the order of the integers. So clearly there is no sentence of L equivalent to ψ for countable models.

THEOREM 1.3. L^* is compact.

REMARK. If we just wanted to prove λ -compactness for $\lambda < \kappa$, the proof would be somewhat easier.

In order to take care of the possibility that $|L| \ge \kappa$, we encode all the *m*-place relations by one relation with parameters and then we use saturativity. A similar trick was used by Chang [Ch 2] who attributes it to Vaught who attributes it [Va 1] to Chang.

We also use the technique of indiscernibles from Ehrenfeucht-Mostowski [EM]. Helling [He 1] used indiscernibles with weakly compact cardinals.

PROOF OF THEOREM 1.3. Let T be a theory in L^* such that every finite subtheory $t \subseteq T$ has a model. We must show that T has a model. Without loss of generality we may make the following assumptions.

Assumption 1. There is a singular cardinal $\lambda_0 > |T| + \kappa$ such that every (finite) $t \subseteq T$ has a model of power λ_0 . (There is clearly a singular $\lambda_0 > \kappa + |T|$ such that every $t \subseteq T$ has a model of power $< \lambda_0$. Now let P be a new one-place predicate symbol, and replace every sentence of T by its relativization to P (i.e. replace $(Q^{cf}x, y)\varphi(x, y, \overline{z})$ by $(Q^{cf}x, y)(P(x) \wedge P(y) \wedge \varphi(x, y, \overline{z}))$ and replace $(Q^{dc}x, y)\varphi(x, y, \overline{z})$ by $(Q^{dc}x, y)(P(x) \wedge P(y) \wedge \varphi(x, y, \overline{z}))$. Let T' be the resulting theory. Clearly every $t \subseteq T'$ has a model of power λ_0 , and T' has a model iff T has a model. Also |T'| = |T|.

Assumption 2. Every $t \subseteq T$ has a model M_t (of power λ_0) whose universe set is $\lambda_0 = \{\alpha : \alpha < \lambda_0\}$, < (the order on the ordinals) is a relation of M_t , $RC^{M_t} = \{\mu : \mu < \lambda_0 \text{ is a regular cardinal}\}$, ω and κ are individual constants, and there is a pairing function.

Assumption 3. There is $L_a \subseteq L$, L_a countable, and the only symbols in $L-L_a$ are individual constants, and ω , κ are in L_a . We can assume that L has no function symbols.

Let $\{R_i^n: i < \alpha_n, n < \omega\}$ be a list of all the predicate symbols in L, R_i^n being n-place. Define languages L_0' , L_1' as follows: $L_1' = \{\omega, \kappa, <\} \cup \{R^n: n < \omega, R^n \text{ is an } (n+1)\text{-place predicate symbol}\}$, $L_0' = L_1' \cup \{c_i^n: i < \alpha_n, n < \omega, c_i^n \text{ individual constant symbol}\}$. If $\psi \in T$ define ψ_0 by replacing every occurrence of $R_i^n(x_1, \cdots, x_n)$ in ψ by $R^n(x_1, \cdots, x_n, c_i^n)$. Let $T_0 = \{\psi_0: \psi \in T\}$, T_0 is a theory in L_0' and may be taken in place of T.

Claim 1.4. For every language L_b containing < there is a language L_c and a theory $T_c = T(L_b)$ in L_c^* such that:

- (1) $L_h \subseteq L_c$, $|L_h| = |L_c|$.
- (2) Every model M_b for L_b has a fixed expansion to a model M_c for L_c which is a model of T_c .
 - (3) Every formula in L_c^* is T_c -equivalent to an atomic formula; i.e. for all $\varphi(\overline{x}) \in L_c^*$ there is a predicate symbol $R_{\varphi}(\overline{x})$ such that $(\forall \overline{x})(\varphi(\overline{x}) \equiv R_{\varphi}(\overline{x})) \in T_c$.
 - (4) T_c has Skolem functions; i.e., for all $\varphi(y, \bar{x}) \in L_c^*$ there is a function symbol $F_{\omega} \in L_c^*$ such that

$$(\,\forall \bar{x})[(\exists y)\varphi(y,\,\bar{x})\equiv \varphi(F_{\varphi}(\bar{x}),\,\bar{x})]\in T_c.$$

- (5) For every formula $\varphi(x, y, \overline{z}) \in L_c^*$ there are function symbols $F_{\varphi}^i \in L_c$ (for $i = 1, \dots, 5$) such that: if $|M_b| = \lambda_0$ (the universe set of M_b), $<^{M_b}$ is the "natural" order, then for all sequences \overline{a} from M_b if $\varphi(x, y, \overline{a})$ linearly orders $A = \{y \in |M_c|: M_c \models (\exists x) \varphi(x, y, \overline{a})\} \neq \emptyset$ then (in M_c):
 - (i) $F^1_{\omega}(\overline{a}) = \operatorname{cf}(A, \varphi(x, y, \overline{a})).$
- (ii) The sequence $\langle F_{\varphi}^2(y, \overline{a}) \colon y < F_{\varphi}^1(\overline{a}) \rangle$ is an increasing unbounded sequence in A.
- (iii) A has a cut (A_1, A_2) such that $\operatorname{cf}^*(A_2, \varphi(x, y, \overline{a})) = \mu$, $\operatorname{cf}(A_1, \varphi(x, y, \overline{a})) = \chi$ iff $F^3_{\varphi}(\mu, \chi, \overline{a}) = 0$ iff $F^3_{\varphi}(\mu, \chi, \overline{a}) \neq 1$.
- (iv) If $F_{\varphi}^{3}(\mu, \chi, \bar{a}) = 0$ then $\langle F_{\varphi}^{4}(y, \mu, \chi, \bar{a}) : y < \chi \rangle$ is an increasing unbounded sequence in A_{1} .
- (v) If $F_{\varphi}^{3}(\mu, \chi, \bar{a}) = 0$ then $\langle F_{\varphi}^{5}(y, \mu, \chi, \bar{a}) : y < \mu \rangle$ is a decreasing unbounded sequence in A_{2} [where A_{1}, A_{2} in (iv), (v) are from (iii)].

PROOF. If in each stage we were to take $\varphi \in L_b^*$ (instead of L_c^*) the proof would be trivial. By repeating this process ω times we get the desired result.

Notation. Define languages L_n and theories T_n in L_n^* as follows: $L_0 = L_a \cup \{P\}$ where L_a is from Assumption 3 and P is a new unary predicate symbol. If L_n is defined let $L'_n = L_n \cup \{P_n, P^n\}$ where P_n, P^n are new unary predicate symbols. Now L_{n+1} , T_{n+1} will be L_c and $T(L_b)$ from Claim 1.4 where L'_n corresponds to L_b . Clearly L_n are countable. Let $L_\infty = \bigcup L_n$, $T_\infty = \bigcup T_n$.

DEFINITION 1.4. If M is a model, Δ a set of formulas $\varphi(\overline{x})$ (i.e. a formula with a finite sequence of variables, including its free variables) in the language of M, $A \subseteq |M|$, then the sequence $\{b_i : i < \alpha\} \subseteq |M|$ is Δ -indiscernible (or a sequence of Δ -indiscernibles) over A if $i \neq j \Rightarrow b_i \neq b_j$ and for all $\varphi(x_0, \dots, x_{k-1}) \in \Delta$, $n \leq k$, permutation σ of $\{0, \dots, n-1\}$ and

 $a_n, \dots, a_{k-1} \in A$ and $j(0) < \dots < j(n-1) < \alpha, i(0) < \dots < i(n-1) < \alpha$ the following holds:

$$M \models [b_{i(\sigma(0))}, \cdots, b_{i(\sigma(n-1))}, a_n, \cdots, a_{k-1}]$$

$$\iff M \models [b_{i(\sigma(0))}, \cdots, b_{i(\sigma(n-1))}, a_n, \cdots, a_{k-1}].$$

- Claim 1.5. 1. If A, Δ , M are as in Definition 1.4, A and Δ are finite, and $B \subseteq |M|$ is infinite, then there are $b_i \in B$ such that $\{b_i : i < \omega\}$ is Δ -indiscernible over A.
- 2. If A, Δ , M are as in Definition 1.4, Δ is finite, $B \subseteq |M|$, $|A| < \kappa \le |B|$, then there are $b_i \in B$ such that $\{b_i : i < \kappa\}$ is Δ -indiscernible over A (κ is the weakly compact cardinal chosen at the beginning).
- PROOF. 1. This is a result of the infinite Ramsey theorem. Ehrenfeucht-Mostowski [EM] used this to obtain essentially (1).
- (2) It is known that κ is weakly compact iff $\kappa \to (\kappa)_{\mu}^{m}$ for all $\mu < \kappa$ (see [Si 1]). From here the result is immediate. \square

Let $\{c_{\alpha}: \alpha < \alpha_{T}\}$ be all the individual constants in $L - L_{a}$ (see Assumption 3). Let $S = \{(t, n, B): t \subseteq T, n < \omega, B \subseteq \{c_{\alpha}: \alpha < \alpha_T\}, t \text{ and } B \text{ finite}\}.$ Denote elements of S by s or $s_i = (t_i, n_i, B_i)$ and $s_1 \leq s_2$ will mean $t_1 \subseteq$ t_2 , $n_1 \le n_2$, $B_1 \subseteq B_2$. Now we define the L_n -model M(s), s = (t, n, B). For t, B fixed, denote M(s) by M^n . Define M^n by induction on n such that M^{n+1} expands M^n , M^n is an L_n -model, $P_n(M^{n+1}) \subseteq \omega$, $P^n(M^{n+1}) \subseteq \kappa$, $|P_n(M^{n+1})| = \aleph_0$, $|P^n(M^{n+1})| = \kappa$. For n = 0 take M^0 to be the expansion of M_t by adding the predicate $P(M^0) = B$. Let $\{\varphi_i(\bar{x}^i): i < \omega\}$ be a list of the formulas of L_{∞} , such that the number of variables in \bar{x}^i is $\leq i$, and let $\Delta_n = \{\varphi_i : i \le n\} \cap L_n$. If M^n is defined we define M^{n+1} as follows: Let $A^1 \subseteq P^{n-1}(M^n)$ (or $A^1 \subseteq \{a: a < \kappa\}$ if n = 0) be a Δ_n -indiscernible sequence over $B \cup \{a: a < \omega\}$ and let $A^2 \subset P_{n-1}(M^n)$ (or $A^2 \subset \{a: a < \omega\}$ if n=0) be a Δ_n -indiscernible sequence over $B \cup \{a^1, \dots, a^n\}$, where a^1 , \cdots , a^n are the first n elements of A^1 . (In fact A^1 , A^2 are sets, but we look on them as sequences by the ordering <.) As for each $\varphi(\bar{x}) \in \Delta_n$ the number of variables in \bar{x} is $\leq n$, A^2 is Δ_n -indiscernible over $B \cup A^1$. Expand M^n by interpreting P^n as A^1 and P_n as A^2 , and then expand the result to an L_{n+1} -model by Claim 1.4, so it will be a model of T_n (mentioned in the notation after Claim 1.4). This will be M^{n+1} . Let L_U be the language obtained from L_{∞} by adding the individual constants $\{c_{\alpha}\colon \alpha<\alpha_T\}$ (from L- L_a) and new constants y^i , y_i for $i < \kappa$. Now we define a first-order theory T_U in L_U . Let $\psi(x_1, \dots, x_l; x^1, \dots, x^m; z_1, \dots, z_k)$ be a formula in L_{∞} and let $j(1) < \cdots < j(m) < \kappa$, $i(1) < \cdots < i(l) < \kappa$. Then

 $\psi(y_{i(1)}, \cdots, y_{i(l)}; y^{i(1)}, \cdots, y^{j(m)}; c_{\alpha(1)}, \cdots, c_{\alpha(k)}) \in T_U$ iff there is $s_1 \in S$ such that, for all $s \ge s_1$, s = (t, n, B), and for all $a_1 < \cdots < a_l \in P_n(M(s))$, $b_1 < \cdots < b_m \in P^n(M(s))$, it is the case that

$$M(s) \models \psi[a_1, \dots, a_l; b_1, \dots, b_m; c_{\alpha(1)}, \dots, c_{\alpha(k)}].$$

Clearly T_U is consistent. Let $M \models T_U$ be κ^+ -saturated (see Morley and Vaught [MV] or e.g. Chang and Keisler [CK]). Let N be the submodel of M whose universe set is the closure of P^M under the functions of M (and so in particular all the individual constants are in N). Let D be a nonprincipal ultrafilter on ω , and let $N^* = N^\omega/D$. We shall show that $N^* \models T$, and thus complete the proof of the theorem. We use the fact that N^* is \aleph_1 -saturated (see e.g. [CK]).

Because of Claim 1.4(3) it is sufficient to show:

(I) If $R_1(x, y, \bar{z})$ is an atomic formula in L_{∞} and $(\forall \bar{z})[(Q^{\text{cf}}x, y)]$ $R_1(x, y, \bar{z}) \equiv R_2(\bar{z})] \in T_{\infty}$, then for all $\bar{a} \in N^*$

$$N^* \models (Q^{cf}x, y)R_1(x, y, \overline{a}) \iff N^* \models R_2[\overline{a}].$$

(II) If $R_1(x, y, \overline{z})$ is an atomic formula in L_{∞} and $(\forall z)[(Q^{dc}x, y)]$ $R_1(x, y, \overline{z}) \equiv R_2(\overline{z})] \in T_{\infty}$, then for all $\overline{a} \in N^*$

$$N^* \models (Q^{\operatorname{dc}}x, y)R_1(x, y, \overline{a}) \iff N^* \models R_2[\overline{a}].$$

PROOF OF (I). Clearly the sets $\{a \in N^*: a < \omega(N^*)\}$, $\{a \in N^*: a < \kappa(N^*)\}$ are linearly ordered by <, and both have cofinality κ . So by the assumptions and Claim 1.4(5), $N^* \models R_2(\overline{a}) \Rightarrow N^* \models (Q^{cf}x, y)R_1(x, y, \overline{a})$.

Now assume $N^* \models \neg R_2[\overline{a}]$ but $N^* \models (Q^{cf}x, y)R_1(x, y, \overline{a})$. We shall produce a contradiction. Hence $R_1(x, y, \overline{a})$ linearly orders $A = \{b \colon N^* \models (\exists x)R_1(x, b, \overline{a})\} \neq \emptyset$, and A has no last element. Since N^* is \aleph_1 -saturated, cf $A > \aleph_0$ and so by $N^* \models (Q^{cf}x, y)R_1(x, y, \overline{a})$ we have that cf $A = \kappa$. By the assumptions and Claim 1.4(5)(ii) we may assume that $R_1(x, y, \overline{a}) = x < y \land y < a$ (a is one element in place of the sequence \overline{a}), $N^* \models RC[a]$, and so $A = \{b \colon N^* \models b < a\}$. Let $\{a_i\}_{i < \kappa}$ be an increasing unbounded sequence in $A, a_{\kappa} = a$, and suppose that $a_i = \langle \cdots, a_i^n, \cdots \rangle_{n < \omega}/D$ where $a_i^n \in N$ (since $N^* = N^{\omega}/D$).

Now for all $\alpha < \beta < \kappa$ define $f(\alpha, \beta) = \{n < \omega : a_{\alpha}^n < a_{\beta}^n < a_{\kappa}^n, RC[a_{\kappa}^n], a_{\kappa}^n \neq \omega, \kappa\}$. Since $N^* \models (a_{\alpha} < a_{\beta} < a_{\kappa} \land RC[a_{\kappa}] \land a_{\kappa} \neq \omega \land a_{\kappa} \neq \kappa)$ we have by Łos' theorem that $f(\alpha, \beta) \in D$. κ , being weakly compact, satisfies $\kappa \to (\kappa)_{2 \ge 0}^2$ and so without loss of generality $f(\alpha, \beta) = f(0, 1)$. If, for all $n \in f(0, 1)$, there exists b^n such that $a_{\alpha}^n < b^n < a_{\kappa}^n$ for all $\alpha \in \kappa$, then $b = \langle \cdots, b^n, \cdots \rangle / D \in N^*$ and $a_{\alpha} < b < a$ for all $\alpha < \kappa$, a contradiction.

So there is $n \in f(0, 1)$ for which $\{a_{\alpha}^n : \alpha < \kappa\}$ is an (increasing) unbounded sequence in $\{b \in N : b < a^n\}$ and $N \models RC[a^n] \land a^n \neq \omega \land a^n \neq \kappa$. From now on denote $a = a^n$, $a_{\alpha} = a_{\alpha}^n$. Let $a_{\alpha} = \tau_{\alpha}(\cdots, y^{j(\alpha, m)}, \cdots; \cdots, y_{i(\alpha, l)}, \cdots; \overline{b_{\alpha}})_{l < l(\alpha), m < m(\alpha)}$, where τ_{α} is a term, in L_{∞} , $j(\alpha, m)$ is an increasing sequence in m, $i(\alpha, l)$ is an increasing sequence in l, and $\overline{b_{\alpha}}$ is a sequence from P^N . Since we may replace $\{a_{\alpha} : \alpha < \kappa\}$ by any subset of the same power, we may assume that $m(\alpha) = m_0$. $l(\alpha) = l_0$, and $\tau_{\alpha} = \tau$ for all $\alpha < \kappa$.

Since $N \models RC[a] \land a > \omega$ and in every M(s) the interpretation of P is a finite set, and $\{b: b < \omega\}$ is a countable set, there is a function symbol F in L_{∞} such that

$$F(x^{0}, \dots, x^{m_{0}-1}, x)$$

$$= \sup \{ \tau(x^{0}, \dots, x^{m_{0}-1}; z_{0}, \dots, z_{l_{0}-1}, v_{1}, \dots) < x :$$

$$z_{0}, \dots, < \omega, v_{1}, \dots, \in P \}.$$

Clearly $\tau(\cdots, y^{j(\alpha,m)}, \cdots; \cdots, y_{i(\alpha,l)}, \cdots; \overline{b}_{\alpha}) < F(\cdots, y^{j(\alpha,m)}, \cdots, a)$ < a, and thus without loss of generality $a_{\alpha} = F(\cdots, y^{j(\alpha,m)}, \cdots, a)$. If $N \vDash a < \kappa$ then N satisfies the sentence "saying:" there is a regular cardinal $a < \kappa$ such that X_{κ} is an unbounded subset of $\{c: c < a\}$, but X_b is a bounded subset of $\{c: c < a\}$ for any $b < \kappa$; where $X_b = \{F(\cdots, x, \cdots, a) < a: x < b\}$. Hence, for some s, M(s) satisfies it, contradicting the fact that $cf \kappa = \kappa$. If $N \vDash a > \kappa$, as we get F we can get F' such that $a_{\alpha} < F'(a) < a$ for every α , a contradiction.

PROOF OF (II). As in the proof of (I) it is clear by Claim 1.4 that $N^* \models R_2[\bar{a}] \Rightarrow N^* \models (Q^{dc}x, y)R_1(x, y, \bar{a})$.

Now assuming $N^* \models (Q^{dc}x, y)R_1(x, y, \overline{a}) \land \neg R_2(\overline{a})$ we shall arrive at a contradiction. We can restrict ourselves to the case where $x < y \equiv_{def} R_1(x, y; \overline{a})$ linearly orders $A = \{b \in N^* : (\exists x)R_1(x, b, \overline{a})\} \neq \emptyset$, A has no last element. Since there are pairing functions we may replace \overline{a} by a. By hypothesis A has a Dedekind cut (A_1, A_2) such that cf A_1 , cf* $A_2 \in \{\omega, \kappa\}$.

Case 1. cf $A_1 = cf^* A_2 = \omega$: This contradicts the \aleph_1 -saturation of N^* .

Case 2. cf $A_1 = \omega$, cf* $A_2 = \kappa$: Let $\{b_m\}_{m < \omega}$ be an increasing unbounded sequence in A_1 , and let $\{a_\alpha\}_{\alpha < \kappa}$ be a decreasing unbounded sequence in A_2 , where $b_m = \langle \cdots, b_m^n, \cdots \rangle_{n < \omega}/D$, $a_\alpha = \langle \cdots, a_\alpha^n, \cdots \rangle_{n < \omega}/D$.

For all $\alpha < \kappa$ define $f_1(\alpha) = \langle \{n < \omega \colon b_m^n < a_\alpha^n\} \colon m < \omega \rangle$. Since the range of f_1 is a set of power $\leq 2^{\aleph \cdot 0}$ we can assume that f_1 is constant. Let $T_m = \{n < \omega \colon b_m^n < a_\alpha^n\}$; clearly $T_m \in D$. Let R be a new one-place predicate symbol, $R^n = \{b_m^n \colon n \in T_m\}$, and $(N^*, R) = \prod_{n < \omega} (N, R^n)/D$. Clearly $\{b_m \colon m < \omega\} \subseteq R \cap A$ and $\{R \cap A, <^*\}$ is an \aleph_1 -saturated model of the

theory of order, and so it contains an upper bound to the b_m 's, and also $b <^* a_\alpha$ for all $b \in R \cap A$, $\alpha < \kappa$. This is a contradiction.

Case 3. cf $A_1 = \kappa$, cf* $A_2 = \omega$: The proof is similar to the proof of Case 2.

Case 4. cf $A_1 = \text{cf}^* A_2 = \kappa$: Let $\{a_\alpha\}_{\alpha < \kappa}$ ($\{b_\alpha\}_{\alpha < \kappa}$) be an increasing (decreasing) unbounded sequence in A_1 (A_2), where $a_\alpha = \langle \cdots, a_\alpha^n, \cdots \rangle_{n \in \omega}/D$, $b_\alpha = \langle \cdots, b_\alpha^n, \cdots \rangle_{n \in \omega}/D$.

As in (I) we can assume that for all $\alpha < \beta < \kappa$ the following sets are not dependent on the particular α or β :

$$J_1 = \{n < \omega : a_{\alpha}^n < a_{\beta}^n\}, \quad J_2 = \{n < \omega : a_{\alpha}^n < b_{\beta}^n\}, \quad J_3 = \{n < \omega : b_{\beta}^n < b_{\alpha}^n\}.$$

Also $J_i \in D$, and $J_0 = \{n < \omega : N \models \exists R_2[a^n]\} \in D$, where $a = \langle \cdot \cdot \cdot, a^n, \cdot \cdot \cdot \rangle$. Thus as in (I), for some $n \in \bigcap J_i$, $R_1(x, y, a^n)$ linearly orders

$$A = \{y \in \mathbb{N}: (\exists x)R_1(x, y, a^n)\} \supset \{a_\alpha^n, b_\alpha^n: \alpha < \kappa\}$$

and, for no $c \in A$, $a_{\alpha}^{n} < c < b_{\alpha}^{n}$. So by renaming,

(*) There is $a \in N$, $N \models \neg R_2[a]$, $A = \{b \in N: N \models (\exists x)R_1(x, b, a)\}$ is linearly ordered by $x <^* y = R_1(x, y, a)$, and A has a cut (A_1, A_2) with $\{a_\alpha\}_{\alpha < \kappa}$ $(\{b_\alpha\}_{\alpha < \kappa})$ an increasing (decreasing) unbounded sequence in A_1 (A_2) . Let

$$a_{\alpha} = \tau_{\alpha}(\cdots, y^{j(\alpha,l)}, \cdots; \cdots, y_{i(\alpha,m)}, \cdots; \overline{d}_{\alpha})_{l < l(\alpha), m < m(\alpha)},$$

and $j(\alpha, l)$ and $i(\alpha, m)$ increase with l, m respectively, $a = \tau^*(\cdots, y^{\xi(l)}, \cdots; \cdots, y_{\xi(m)}, \cdots; \overline{d})$: where $\overline{d}, \overline{d}_{\alpha}$ are sequences from $P^M = P^N$.

Since κ is weakly compact we can assume the following:

- (1) $\tau_{\alpha} = \tau_{0}$, $l(\alpha) = l(0)$, $m(\alpha) = m(0)$.
- (2) For every formula $\varphi(\overline{x}^1, \overline{x}^2, \overline{x}^3) \in L_{\infty}$ the truth value of $\varphi(\overline{d}_{\alpha}, \overline{d}_{\beta}, \overline{d})$ is the same for all $\alpha < \beta < \kappa$.
 - (3) There is $l_1 < l(0)$ such that for every $\alpha < \beta < \kappa$

$$y^{j(\alpha,0)} = y^{j(\beta,0)} < y^{j(\alpha,1)} = y^{j(\beta,1)} < \dots < y^{j(\alpha,l_1-1)} = y^{j(\beta,l_1-1)}$$
$$< y^{j(\alpha,l_1)} < y^{j(\alpha,l_1+1)} < \dots < y^{j(\alpha,l(0)-1)} < y^{j(\beta,l_1)}$$
$$< \dots < y^{j(\beta,l(0)-1)}$$

and
$$y^{\xi(l)} < y^{j(\alpha,l_1)}$$
 for any l . Denote for $l < l_1 y^{j(l)} = y^{j(\alpha,l)}$,
$$\overline{y}^* = \langle y^{j(0)}, \cdots, y^{j(l_1-1)}, \cdots, y^{\xi(l)}, \cdots \rangle,$$
$$\overline{y}^{\alpha} = \langle y^{j(\alpha,l_1)}, \cdots, y^{j(\alpha,l(0)-1)} \rangle.$$

- (4) Similar to (3) for the $y_{i(\alpha,m)}$, we get \overline{y}_{α} and \overline{y}_{*} . Thus $a_{\alpha} = \tau_{0}(\overline{y}^{*}, \overline{y}^{\alpha}, \overline{y}_{*}, \overline{y}_{\alpha}, \overline{d}_{\alpha})$, $a = \tau^{*}(\overline{y}^{*}, \overline{y}_{*}, \overline{d})$. By treating the b_{α} similarly and making some change in $\overline{y}^{*}, \overline{y}_{\alpha}, \overline{d}_{\alpha}$ we may assume
- (5) $b_{\alpha} = \tau^{0}(\bar{y}^{*}, {}^{\alpha}\bar{y}, \bar{y}_{*}, {}_{\alpha}\bar{y}, \bar{d}^{\alpha})$, and if $\alpha < \beta$ then every element of ${}^{\alpha}\bar{y}$ comes before every element of ${}^{\beta}\bar{y}$ (in the sequence $\{y^{i}: i < \kappa\}$), and after every element of \bar{y}^{*} . Similarly for ${}_{\alpha}\bar{y}$. (Of course \bar{d}^{α} is a sequence from P^{M} ; \bar{y}^{*} , ${}^{\alpha}\bar{y}$ from $\{y^{i}: i < \kappa\}$ and \bar{y}_{*} , ${}_{\alpha}\bar{y}$ from $\{y_{i}: i < \kappa\}$.)
- (6) As a strengthening of (2), for all $\varphi(\overline{x}^1, \overline{x}^2, \overline{x}^3) \in L_{\infty}$ and all α, β the truth values of $\varphi(\overline{d}^{\alpha}, \overline{d}^{\beta}, \overline{d}), \varphi(\overline{d}_{\alpha}, \overline{d}^{\beta}, \overline{d})$, and $\varphi(\overline{d}_{\alpha}, \overline{d}_{\beta}, \overline{d})$ are dependent only on the order between α and β .

Notation. $a_{\alpha,\beta,\gamma} = \tau_0(\bar{y}^*, \bar{y}^\alpha, \bar{y}_*, \bar{y}_\beta, \bar{d}_\gamma)$, $b_{\alpha,\beta,\gamma} = \tau^0(\bar{y}^*, \alpha \bar{y}, \bar{y}_*, \beta \bar{y}, \bar{d}^\gamma)$. Notice that by the indiscernibility of the y's and (6), $a_{\alpha,\beta,\gamma}$, $b_{\alpha,\beta,\gamma} \in A$ and the order between $a_{\alpha,\beta,\gamma}$ and $a_{\alpha(1),\beta(1),\gamma(1)}$ depends only on the order between α and $\alpha(1)$, the order between β and $\beta(1)$, and the order between γ and $\gamma(1)$; and similarly for the $b_{\alpha,\beta,\gamma}$.

Now for every $\alpha, \beta, \gamma, \delta < \kappa$ choose $\epsilon, \alpha, \beta, \gamma, \delta < \epsilon < \kappa$. So $a_{\alpha} < b_{\epsilon} \Rightarrow a_{\alpha,\alpha,\alpha} < b_{\epsilon} \Rightarrow a_{\alpha,\beta,\gamma} < b_{\epsilon} \Rightarrow a_{\alpha,\beta,\gamma} < b_{\delta}$, and hence every $a_{\alpha,\beta,\gamma} \in A_{1}$. Similarly $b_{\alpha,\beta,\gamma} \in A_{2}$.

If $a_{0,0,1} \leq a_{1,1,0}$ then $\alpha < \alpha(1), \beta > \beta(1)$ imply $a_{\alpha,\alpha,\beta} \leq a_{\alpha(1),\alpha(1),\beta(1)}$. So for all $\alpha > 0$, $a_{\alpha,\alpha,\alpha} \leq a_{\alpha+1,\alpha+1,0}$, and so $\{a_{\alpha,\alpha,0} : \alpha < \kappa\}$ is an unbounded subset of A_1 . Similarly, if $a_{0,0,1} \leq a_{1,1,0}$ and $a_{1,2,0} \leq a_{2,1,0}$ then $\{a_{\alpha,1,0} : \alpha < \kappa\}$ is unbounded in A_1 , if $a_{0,0,1} \leq a_{1,1,0}$ and $a_{1,2,0} > a_{2,1,0}$ then $\{a_{1,\alpha,0} : \alpha < \kappa\}$ is unbounded in A_1 , and if $a_{0,0,1} > a_{1,1,0}$ then $\{a_{0,0,\alpha} : \alpha < \kappa\}$ is unbounded in A_1 . A parallel claim is true for the b's. So we may change τ_0 and τ^0 such that $a_{\alpha,\beta,\gamma}$ and $b_{\alpha,\beta,\gamma}$ will each be dependent only on one index. (If $a_{\alpha,\beta,\gamma}$ is not dependent on α , then \overline{y}^{α} is empty; if not dependent on β , \overline{y}_{β} is empty, and if not dependent on γ , \overline{d}_{γ} is constant.) There are, in all, nine possibilities.

We shall now show that there cannot be dependence on γ alone. Assume without loss of generality that $a_{\alpha} = \tau_0(\overline{y}; \overline{d}_{\gamma})$ where \overline{y} is the concatenation of all sequences from $\{\overline{y}_i, \overline{y}^i : i < \kappa\}$ which are not dependent on γ . Consider the following type in the variables x_i , $i < l = l(\overline{d}_{\gamma})$: (let $\overline{x} = \langle x_1, \dots, x_l \rangle$: $\{P(x_i): i < l\} \cup \{(\exists x)R_1(x, \tau_0(\overline{y}, \overline{x}), a)\} \cup \{\tau_0(\overline{y}, \overline{x}) < b_{\alpha}: \alpha < \kappa\} \cup \{a_{\alpha} < \tau_0(\overline{y}, \overline{x}): \alpha < \kappa\}$).

This type, containing parameters from N, is finitely satisfiable in N and thus in M since N is an elementary submodel of M. Thus it is satisfiable by $\overline{c} = \langle c_1, \cdots, c_l \rangle$ in M, since M is κ^+ -saturated. But $c_i \in N$ since $c_i \in P^M$ and thus the type is satisfiable in N. This contradicts the definition of the a_{α} , b_{α} .

We are left with four cases. Without loss of generality we shall deal only

with the case $a_{\alpha} = \tau_0(\bar{y}^*, \bar{y}^{\alpha}, \bar{y}_*, \bar{d})$, $b_{\alpha} = \tau^0(\bar{y}^*, \bar{y}_*, \alpha \bar{y}, \bar{d})$. Without loss of generality all the above sequences are of equal length, and it will be recalled that the sequences of the y's here are increasing sequences, $\bar{y}^* < \bar{y}^{\alpha}, \bar{y}_* < \alpha \bar{y}$ (i.e., every element in the left sequence is smaller than every element in the matching right sequence).

For every sentence ψ which N satisfies and $s_1 \in S$ there is $s \ge s_1$ such that M(s) satisfies ψ . Hence there are $s \in S$, and a sequence $\overline{d} \in P[M(s)]$ where s = (t, n, B) such that $n > 1000l(y^*)$ and n is big enough so that all the formulas we shall need are in Δ_{n-3} and (remembering the indiscernibility in the definition of $P^{n-2}[M(s)]$, $P_{n-2}[M(s)]$).

- (**) If $\overline{c}^* < \overline{c}^1 < \overline{c}^2$ are increasing sequences from $P^{n-2}[M(s)]$ and $\overline{c}_* < {}_1\overline{c} < {}_2\overline{c}$ are increasing sequences from $P_{n-2}[M(s)]$, and $l(\overline{c}^*) = l(\overline{y}^*)$, $l(\overline{c}^2) = l(\overline{c}^1) = l(\overline{y}^1)$, $l(\overline{c}_*) = l(\overline{y}_*)$, $l(1\overline{c}) = l(1\overline{y}) = l(1\overline{y})$ then
- (A) $M(s) \models \exists R_2[\tau(\overline{c}^*, \overline{c}_*, \overline{d}')], R_1(x, y, \tau(\overline{c}^*, \overline{c}_*, \overline{d}'))$ is a linear order <* (nonempty) without a last element on a set A_s .
 - (B) In M(s) the following holds:

$$\begin{split} \tau_0(\overline{c}^*,\,\overline{c}^1,\,\overline{c}_*,\overline{d}') <^* \tau_0(\overline{c}^*,\,\overline{c}^2,\,\overline{c}_*,\,\overline{d}') <^* \tau^0(\overline{c}^*,\,\overline{c}_*,\,{}_2\overline{c},\,\overline{d}') \\ <^* \tau^0(\overline{c}^*,\,\overline{c},\,{}_1\overline{c},\,\overline{d}') \in A_s. \end{split}$$

Define $A_s^1=\{b\in A_s\colon$ there is $\overline{c}^0>\overline{c}^*$ such that $b<^*\tau_0(\overline{c}^*,\overline{c}^0,\overline{c}_*,\overline{d}')\}$ and $A_s^2=\{b\in A_s\colon$ there is $\overline{c}_0>\overline{c}_*$ such that $\tau^0(\overline{c}^*,\overline{c}_*,\overline{c}_0,\overline{d}')\}<^*b$. Clearly $A_s^1\cap A_s^2=\emptyset$, cf $A_s^1=\kappa$, cf $A_s^2=\omega$, but from $M(s)\models \neg R_2[\tau(\overline{c}^*,\overline{c}_*,\overline{d}')]$ and by the definition of R_2 it follows that $M(s)\models \neg (Q^{\operatorname{dc}}x,y)R_1[x,y,\tau(\overline{c}^*,\overline{c},\overline{d}')]$. Thus there is $b\in A_s$, $A_s^1< b< A_s^2$. But A_s , A_s^1 , A_s^2 are definable by the formulas $\varphi(x,\overline{c}^*,\overline{c},\overline{d}')$, $\varphi^1(x,\overline{c}^*,\overline{c}_*,\overline{d}')$, $\varphi^2(x,\overline{c}^*,\overline{c}_*,\overline{d}')$, where $\varphi,\varphi^1,\varphi^2\in L_n$.

Now by 1.4 there is a function symbol F in L_{n+1} such that for all s_1 such that $n_1 > n$ the following sentence holds in $M(s_1)$ (abusing our notation the free variables are $\bar{y}_*, \bar{y}^*, \bar{z}$):

If $\neg R_2(\tau(\bar{y}^*, \bar{y}_*, \bar{z}))$; and $R_1(x, y, \tau(\bar{y}^*, \bar{y}_*, \bar{z}))$ defines a linear order on $A = \{v: (\exists x)R_1(x, v, \bar{z})\}; \bar{y}_* (\bar{y}^*)$ is a sequence of elements $< \omega \ (< \kappa)$; and for all $\bar{y}^* < \bar{y}^1 < \bar{y}^2$ such that the elements of \bar{y}^1, \bar{y}^2 are in P^n , and for all $\bar{y}_* < \bar{y}_1 < \bar{y}_2$ such that the elements of \bar{y}_1, \bar{y}_2 , are in P_n , it is true that

$$\begin{split} \tau_0(\bar{y}^*,\,\bar{y}^1,\,\bar{y}_*,\bar{z}) <^*\tau_0(\bar{y}^*,\,\bar{y}^2,\,\bar{y}_*,\,\bar{z}) \\ <^*\tau^0(\bar{y}_1,\,\bar{y}_*,\,\bar{y}_2,\,\bar{z}) <^*\tau^0(\bar{y}^*,\,\bar{y}_*,\,\bar{y}_1,\,\bar{z}) \in A \end{split}$$

where $x <^* y \equiv R_1(x, y, \tau(\overline{y^*}, \overline{y_*}, \overline{z}))$, then $F(\overline{y^*}, \overline{y_*}, \overline{z}) \in A$ and for all $\overline{y_1}, \overline{y^1}$ as above

$$\tau_0(\bar{y}^*, \bar{y}^1, \bar{y}_*, z) <^* F(\bar{y}^*, \bar{y}_*, \bar{z}) < \tau^0(\bar{y}^*, \bar{y}_*, \bar{y}_2, \bar{z}).$$

Thus M, and N, satisfy the above sentence (because of the suitable indiscernibility of P^n , P_n). Thus $F(\bar{y}^*, \bar{y}_*, \bar{d}) \in A$, $a_{\alpha} < F(\bar{y}^*, \bar{y}_*, \bar{d}) < b_{\alpha}$, a contradiction. This concludes the proof of Theorem 1.3 and of Theorem 1.1.

2. Discussion. More on L^* . Some natural problems are:

Problem 2.1. A. In Theorem 1.2, is the condition that κ be weakly compact necessary?

B. Give L^* a "nice" axiomatization.

In Theorem 1.2 we prove actually:

THEOREM 2.2. A. L^* satisfies the completeness theorem; that is, for every sentence $\psi \in L^*$ we can find (recursively) a recursive set Γ of first-order sentences (or even a single sentence) in a richer language such that ψ has a model iff Γ has a model.

B. Every L-model has L^* -elementary extensions of arbitrary large power.

Clearly L^* is interpretable in L_{κ^+,κ^+} (the language with conjuction on κ formulas and quantification on κ variables), and by Hanf [Ha 1] every L-model has an L_{κ^+,κ^+} -elementary submodel of power $\leq |L|^{\kappa}$. Thus

THEOREM 2.3. A. If $|L| \le \lambda = \lambda^{\kappa}$, then every L-model of power $\ge \lambda^{\kappa}$ has an L^* -elementary submodel of power λ^{κ} . (If $|L| \le \kappa$ we can choose $\lambda = 2^{\kappa}$.)

- B. There is a sentence in L^* (having a model) whose models are of power $\geq 2^{\aleph_0}$. There is a consistent theory in L^* of power κ whose models are of power $\geq 2^{\kappa}$.
 - C. Every consistent theory in L^* of power $\leq \kappa$ has a model of power $\leq \kappa$.

PROOF. A has already been proved.

B is proved by the sentence "< is a linear order, in which every element has immediate predecessor and successor; $\neg (Q^{dc}x, y)(x < y)$; P is a nonempty convex subset, bounded from above and below, which has no first or last element." Every model of this sentence is of power $\ge 2^{\aleph_0}$.

Let T be the following theory:

- (1) "< is a linear order and $\exists (Q^{dc}x, y)x < y$ ".
- (2) " $c_i < c_j$ for all $i < j \in J$ ", where J is a dense κ -saturated order of power κ .

Clearly T is consistent. Now let $M \models T$ and let (J_1, J_2) be a cut of J, cf $J_1 = \text{cf}^* J_2 = \kappa$. So there is an element $a \in M$, $a_i < a < a_j$, for all $i \in J_1$, $j \in J_2$. Thus $||M|| \ge 2^{\kappa}$. This completes the proof of B.

⁽¹⁾ We can improve 2.3B, i.e. there is $\varphi \in L$ which has models only in cardinalities $\geq \kappa$; see 2.24.

C is proved like 1.3, but we do not need the P.

Elimination of the assumption of the existence of a weakly compact cardinal. In place of a weakly compact cardinal we can assume:

(*) There is a proper class of regular cardinals, C_1 , such that for all $\lambda \in C_1$ there are $\{S_{\alpha}: \alpha < \lambda^+, \text{ cf } \alpha = \lambda\}$ such that for all $S \subseteq \lambda^+$, $\{\alpha < \lambda^+: \text{ cf } \alpha = \lambda, S \cap \alpha = S_{\alpha}\}$ is a stationary set of λ^+ .

By Jensen and Kunen [JK, §2, Theorem 1] the class of regular cardinals satisfies (*), if V = L.

If (*) holds we can choose C such that $\aleph_0 \in C$ ($\lambda \in C \Rightarrow \lambda^+ \notin C$), and $C - \{\aleph_0\}$ satisfies (*).

THEOREM 2.4. If C and (*) are as above, then $L^* = L(Q_C^{cf}, Q_C^{dc})$ satisfies the compactness theorem.

PROOF. The proof is a combination of Keisler [Ke 3, §2] and Chang [Ch 2]. We assume T satisfies the conditions of 1.4, and every finite subtheory has a model. Choose $\lambda \in C$, $\lambda \ge |T|$ (or even $\lambda \ge |T|$). By (*) clearly $\lambda^{\delta} = \lambda$. Now we define an increasing elementary sequence of λ -saturated models $\{M_{\alpha}\}_{\alpha < \lambda^{+}}$, such that for $\alpha < \beta$, M_{β} is an end extension of M_{α} , and $M = \bigcup M_{\alpha}$. Also, if $a \in RC^{M}$ then

$$M \models (Q_C^{cf}x, y)(x < y < a) \iff \lambda = cf\{b \in M: b < a\}$$
$$\iff \lambda^+ \neq cf\{b \in M: b < a\};$$

and if (A_1, A_2) is a cut of an order in M which is definable $(^2)$ (in M by a formula with parameters) such that cf $A_1 = \lambda^+$ or cf* $A_2 = \lambda^+$ then A_1 is also definable (in M by a formula with parameters). Clearly $M \models T$. \square

Cofinality quantifiers. We shall deal with logics containing just the generalized quantifier Q^{cf} . We write Q_{λ}^{cf} in place of Q_{λ}^{cf} .

Theorem 2.5. Let M be an L-model of power $> \kappa$. Then M has an L^{**} -elementary submodel of power κ where $L^{**} = L(Q_{C_i}^{cf}, Q_{\lambda_i}^{cf})_{i < n, j < \mu}$ if

- (1) $\lambda_i \leq \kappa$, $|L| + \mu \leq \kappa$,
- (2) for every i < n there are regular cardinals $\chi_1^i < \cdots < \chi_{m(i)}^i$ such that if for every $l \ \chi < \chi_1^i \iff \chi' < \chi_1^i$ then $\chi \in C_i \iff \chi' \in C_i$; and
- (3) for all regular λ there is a regular $\lambda' \leq \kappa$ such that $\lambda' \neq \lambda_j$ for all j and $\lambda \in C_i \iff \lambda' \in C_i$.

PROOF. The proof is by induction on $\lambda = \|M\|$. As in §1 we can assume that |M| is an ordinal, say $\lambda + 1$, $<^M$ is the order on the ordinals, RC^M is the set of regular cardinals in M, M has Skolem functions, and also cofinality

⁽²⁾ We assume the order is definable.

Skolem functions (see 1.4(5)). Thus in order that a submodel N of M be an L^{**} -elementary submodel; for all $a \in RC^N$ we must have

$$\begin{split} M &\models (Q_{\lambda_j}^{\mathrm{cf}} x, \, y)(x < y < a) \Longleftrightarrow N \models (Q_{\lambda_j}^{\mathrm{cf}} x, \, y)(x < y < a), \\ M &\models (Q_{C_i}^{\mathrm{cf}} x, \, y)(x < y < a) \Longleftrightarrow N \models (Q_{C_i}^{\mathrm{cf}} x, \, y)(x < y < a). \end{split}$$

- Case 1. λ is a regular cardinal: Choose regular $\lambda' < \lambda$, $\lambda' \neq \lambda_j$ for all j, and $\lambda \in C_i \iff \lambda' \in C_i$. Build an increasing sequence $\{M_\alpha\}_{\alpha \le \lambda'}$ of elementary submodels of M such that
 - (i) $M_{\alpha} \subseteq M_{\alpha+1}$, $M_{\delta} = \bigcup_{\alpha < \delta} M_{\alpha}$ for δ a limit ordinal, $||M_0|| \ge \kappa$.
- (ii) $|M_{\alpha}|$ is an initial segment of λ with the addition of λ (which is the last element of M). M_{λ} will be the desired model.
- Case 2. λ is singular. Choose regular $\chi < \lambda$ such that $\lambda < \chi_I^i \iff \chi < \chi_I^i$. There is such a χ since the number of χ_I^I is finite and they are regular thus $\neq \lambda$, and λ is a limit cardinal. Let M_0 be an elementary submodel of M of power $\chi' = \chi^+ + cf \lambda$ which contains $\{\alpha : \alpha \leq \chi'\} \cup \{\lambda\}$. Define by induction on $\alpha \leq \chi^+$ an increasing sequence of elementary submodels of M, $\{M_{\alpha}\}_{\alpha \leq \chi^+}$, such that $||M_{\alpha}|| = \chi'$, $M_{\delta} = \bigcup_{i < \delta} M_i$ for δ a limit ordinal, and if $a \in RC^M$, $\chi < a$, then there is a' < a, $a' \in M_{\alpha+1}$, such that for every b < a if $b \in M_{\alpha}$, then b < a'. Clearly if $a \in RC^M \cap |M_{x'}|$ then the cofinality of $\{b \in M_{x'}: b < a\}$ is either χ^+ or the cofinality of $\{b \in M: b < a\}$. Thus $M_{\chi'}$ is an L^{**} elementary submodel of M.

We may assume now that in the definition of L^{**} the C_i are pairwise disjoint.

THEOREM 2.6. Assume $\mu < \aleph_0$ in the definition of L^{**} in 2.5.

- (A) L^{**} satisfies the completeness theorem and the compactness theorem (and thus the upward Lowenheim-Skolem theorem).
- (B) Let T be a theory in $L(Q_{C_i}^{cf}, Q_{\lambda_j}^{cf})$. By substituting λ_j' for λ_j and C_i' for C_i we get a theory T'. T has a model iff T' has a model, on condition that:
 - $\begin{array}{ll} (1) & \lambda_{j_1} = \lambda_{j_2} \Longleftrightarrow \lambda_{j_1}' = \lambda_{j_2}', \\ (2) & \lambda_{j} \in C_i \Longleftrightarrow \lambda_{j}' \in C_i', \end{array}$

 - (3) if $C_i = \{\lambda_i : l < l_0\}$ then $C'_i = \{\lambda'_i : l < l_0\}$.

REMARK. In the completeness theorem we consider a single sentence and the set of quantifiers appearing in it, so there is no need for $\mu < \aleph_0$.

SKETCH OF PROOF. Let T be a theory in L^{**} . Without loss of generality T has Skolem functions, there is a symbol < which is an order on the universe, RC is a unary predicate, there are cofinality Skolem functions (see 1.4(5)), and every formula is equivalent to an atomic formula. By adding cofinality quantifiers

we can assume that $L^{**} = L(Q_{C_i}^{cf})_{i \le n}$ where the C_i are disjoint intervals of regular cardinals, $C_n = \{\lambda : \lambda_0 \le \lambda \text{ regular}\}; \bigcup_i C_i$ is all the regular cardinals. By using the previous theorem and the set of sentences from Shelah [Sh 2, §4], we get: if every finite $t \subseteq T$ has a model, then $T \cap L$ has a model M for which if $(\sqrt{x})[R^i(z) \equiv (Q_{C_i}^{cf}x, y)(x < y < z)] \in T$ and $M \models R^i(z) \land RC[z]$, then $cf\{a: a < z\} = \lambda^i.(^3)$ From here, by [Sh 2, §4], the theorem is immediate.

Problem 2.7. When in general is L^{**} compact?

REMARK. If there is a C_i which is an infinite set of λ_j 's then L^{**} is not compact. On the other hand, by the previous theorem and ultraproducts, if every finite $t \subseteq T$ has a model, then there is a T', as in (B) of the previous theorem, which has a model.

Problem 2.8. Give a nice axiomatization of L^{**} . In one case we have

THEOREM 2.9. If $C \neq \emptyset$, and C is not the class of all regular cardinals, then the following system of axioms is complete for $L(Q_C^{cf})$:

- (1) The usual schemes for the first order calculus.
- (2) The following scheme (in which variables serving as parameters are not explicitly mentioned):

$$(Q_C^{cf}x, y)\varphi(x, y) \longrightarrow [\varphi(x, y) \text{ is a linear order on } \{y: (\exists x)\varphi\}$$

without last element

$$(Q_C^{cf}x, y)\varphi(x, y) \wedge \neg (Q_C^{cf}x, y)\psi(x, y) \wedge [\psi(x, y) \text{ is a linear order}]$$

on $\{y: (\exists x)\psi\}$ without last element]

$$\neg [(\forall x_0)(\exists y_0)((\exists x)\varphi(x_1x_0) \longrightarrow (\exists y)\psi(y,y_0)$$

$$\wedge (\forall x_1, y_1)(\psi(y_0, y_1) \wedge \theta(x_1, y_1) \longrightarrow \varphi(x_0, x_1)))]$$

PROOF. By the previous theorem it is sufficient to prove that if $T \subseteq L(Q_C^{cf})$ is countable, complete, and consistent (by the above axiomatization), then T has a model where we interpret C as $\{\aleph_0\}$ for example. The proof is like [KM].

A quantifier close to the quantifiers we have discussed is

DEFINITION 2.1. $(Q^{ec}x, y)[\varphi(x, y), \psi(x, y)]$, which means that the orders defined by $\varphi(x, y)$ and $\psi(x, y)$ on $\{y: (\exists x)\varphi(x, y)\}$ and $\{y: (\exists x)\psi(x, y)\}$, respectively, have the same cofinality.

Conjecture 2.10. The logic $L(Q^{ec})$ is compact and complete (and even has an axiomatization parallel to that of the last theorem). It is not hard to see that

⁽³⁾ The λ^{i} 's are arbitrary.

THEOREM 2.11. (1) There is $\psi \in L(Q^{ec})$ which has a model of power \aleph_{α} iff $\aleph_{\alpha} = \alpha$.

- (2) If $||M|| = \kappa$ where κ is a Mahlo number of rank $\alpha + 1$, then M has an $L(Q^{ec})$ -elementary submodel of power λ for some Mahlo number $\lambda < \kappa$ of rank α (actually the set of such λ 's which corresponds to M is a stationary set). (For information about Mahlo numbers see Lévy [Le 1].)
- (3) If κ is not a Mahlo number then there is a model of power κ , with a finite number of relations, which has no $L(Q^{ec})$ -elementary submodel of smaller power.

Generalized second-order quantifiers. Henkin [Hn 1] defined first-order generalized quantifiers as follows: The truth value of $(Qx)\varphi(x)$ in a model M is dependent only on the isomorphism type of $(|M|, \{x: \varphi(x)\})$, i.e., on the powers of $\{x: \varphi(x)\}$ and $\{x: \neg \varphi(x)\}$. This is how the quantifier $(Q_{\lambda}^{cr}x)\varphi(x) \Leftrightarrow |\{x: \varphi(x)\}| \geq \lambda$ was reached.

Similarly we may define "generalized second-order quantifier" to be such that the truth value of $(QP)\varphi(P)$ in M is dependent only on the isomorphism type of $(|M|, \{P: \varphi(P)\})$, like [Li 1].

The regular second-order quantifier is too strong from the point of view of model theory, and so there are no nice model theoretic theorems about it. But there could be generalized second-order quantifiers which are weak enough for their model theory to be nice, for example by satisfying Lowenheim-Skolem, compactness or completeness theorems. In fact the cofinality quantifiers we discussed previously are an example.

DEFINITION 2.2. If < is a linear order on A then an *initial segement* of A is a set $B \subseteq A$ such that b < a, $a \in B \longrightarrow b \in B$. An increasing sequence $\{B_{\alpha} : \alpha < \lambda\}$ of initial segments is *unbounded* if every initial segment of A is contained in some B_{α} , and it is *closed* if $B_{\delta} = \bigcup_{\alpha < \delta} B_{\alpha}$ for all limit ordinals δ .

If cf $A > \omega$ then the closed and unbounded sequences of initial segments of A generate a (nonprincipal) filter D(A) on the set of all initial segments of A, H(A).

Now we define some generalized second-order quantifiers.

DEFINITION 2.3. Let C be a class of regular cardinals $> \aleph_0$.

$$(Q_C^{\mathrm{st}}P, x, y)[\varphi(x, y), \psi(P)] \iff (Q_C^{\mathrm{cf}}x, y)\varphi(x, y)$$
 and

if $A = \{y : (\exists x) \varphi(x, y)\}$ then $H(A) - \{P : \psi(P), P \in H(A)\} \notin D(A)$; that is, the above set is stationary.

DEFINITION 2.4. Let $\lambda > \aleph_0$ be regular, and let $C \subseteq \lambda$.

 $(Q_{\lambda,C}^{\rm st},P,x,y)[\varphi(x,y),\psi(P)] \Longleftrightarrow (Q_{\lambda}^{\rm st}P,x,y)[\varphi(x,y),\psi(P)]$ and there is a sequence $\{P_i\}_{i<\lambda}$ of initial segments of $\{y\colon (\exists x)\varphi(x,y)\}$ which is closed and unbounded, and $\{i<\lambda\colon\psi(P_i)\}\cup(\lambda-C)\in D(\lambda).$

REMARK. It is not difficult to see that the above is well defined, for if $\{P_i'\}_{i \le \lambda}$ is another example of such a sequence $\{i: P_i = P_i'\} \in D(\lambda)$.

In another example we use a filter similar to that of Kueker [Ku 1]:

For a regular power $\lambda > \aleph_0$ and set A, $|A| \ge \lambda$, let $S_{\lambda}(A) = \{B: B \subseteq A, |B| < \lambda\}$. $D_{\lambda}(A)$ will be the filter on $S_{\lambda}(A)$ generated by the families $S \subset S_{\lambda}(A)$ satisfying

- (1) for all $B \in S_{\lambda}(A)$ there is $B' \in S$ such that $B \subset B'$, and
- (2) S is closed under increasing unions of length $< \lambda$.

Thus for example if M is a model $||M|| > \lambda$ whose language is of power $< \lambda$ then $\{|N|: N < M, ||N|| < \lambda\} \in D_{\lambda}(|M|)$.

We can define a suitable quantifier:

DEFINITION 2.5. $(Q_{\lambda}^{ss}P, x)[\varphi(x), \psi(P)] \iff S_{\lambda}(A) - \{P: |P| < \lambda, P \subseteq A \models \psi[P]\} \notin D_{\lambda}(A)$ where $A = \{x: \varphi(x)\}.$

Again it is not hard to check that the definition is valid.

Problem 2.12. Investigate the logics with the quantifiers (A) $Q_{\lambda,A}^{\rm st}$; (B) $Q_C^{\rm st}$; (C) $Q_{\lambda}^{\rm ss}$. In particular in regard to (1) compactness theorems; (2) downward Lowenheim-Skolem theorems; (3) and transfer theorems (from one λ to another). If necessary use V = L.

We now mention several partial results in this context.

THEOREM 2.13. (A) If $||M|| = \kappa$, κ weakly compact, $|L(M)| < \kappa$, C is the class of all regular cardinals $> \aleph_0$ then M has an $L(Q_C^{\text{st}})$ -elementary submodel of smaller power.

(B) (V = L.) If κ is not weakly compact, then there is a model of power κ , whose language is countable, which has no proper $L(Q_C^{st})$ -elementary submodel. (C as above.)

PROOF. (A) follows from well-known theorems in set theory.

(B) We shall prove it for regular κ ; the result for a singular one follows from it.

By Jensen [Je 1] there is a set S of ordinals $<\kappa$ of cofinality ω such that $\kappa - S \notin D(\kappa)$ but for all $\alpha < \kappa$ of cofinality $> \omega$, $\alpha - \alpha \cap S \in D(\alpha)$. Let f be a two-place function such that for all α of cofinality ω $\{f(\alpha, n): n < \omega\}$ is an increasing sequence with limit α . We shall choose our model to be $M = (\kappa, S, f, <, \cdots, n, \cdots)$. Assume that N is an $L(Q_C^{st})$ -elementary submodel of M of smaller power. Let $\alpha = \sup\{\beta: \beta \in N\}$, then cf $\alpha > \omega$ as

⁽⁴⁾ Q_{λ}^{st} means $Q_{\{\lambda\}}^{st}$

 $M \models (Q_C^{\operatorname{st}}P, x, y)(x < y, (\exists z)(\forall v)[P(v) \equiv v < z \land S(z)]), \text{ and}$ there is a closed and unbounded set $A = \{a_i : i < cf \alpha\} \subset \alpha$ of type $cf \alpha$ which is disjoint with S because $\alpha < \kappa$, cf $\alpha > \omega$. For every $a_i \in A$, let $a'_i =$ $\inf\{b \in N: b \geqslant a_i\}$ and $A' = \{a'_i: a_i \in A\}$. Clearly in $A' = \sup\{a'_i: i < \delta\}$ for δ a limit ordinal. Thus A' is closed and unbounded in N. If $a'_i \in S$, $cf(a'_i) = \omega$ and so the $f(a'_i, n) \in N$ converge to a'_i . So $a_i = a'_i$, contradiction to the disjointness of A and S. Thus we have

$$N \models \neg (Q_C^{st}P, x, y)[x < y, (\exists z)(\forall v)(P(v) \equiv v < z \land S(z))],$$
 a contradiction.

In regard to the possibility that N be of power κ , by Keisler and Rowbottom [KR] (see [CK]) we can expand M such that M will be a Jonsson algebra, and that will be a contradiction. If we restrict ourselves to 3, we can get stronger results.

THEOREM 2.14. (A) $L(Q_{\aleph_1}^{cr}, Q_{\aleph_1}^{st}, Q_{\aleph_1, A_i}^{st})_{i < n}$ is \aleph_0 -compact and complete. The consistency of a sentence is just dependent on the Boolean algebra generated by $A_i/D(\aleph_1)$, and not on the particular A_i .⁽⁵⁾

- (B) $L(Q_{\aleph_1}^{\text{st}}, Q_{\aleph_1, A_i}^{\text{st}})_{i < n}$ is \aleph_1 -compact. (C) If T is a theory in $L(Q_{\lambda}^{\text{cr}}, Q_{\lambda}^{\text{st}}, Q_{\lambda, B_i}^{\text{st}})_{i < n}$ and T' is the corresponding theory in $L(Q_{\aleph_1}^{cr}, Q_{\aleph_1}^{st}, Q_{\aleph_1, A_i}^{st})_{i \le n}$, and $\{B_i\}$ a partition of λ , $\{A_i\}$ a partition of ω_1 , $\aleph_1 - A_i \notin D_i(\aleph_1)$, $\lambda - B_i \notin D(\lambda)$ then T has a model $\Rightarrow T'$ has a model.

PROOF. (A) Without loss of generality we shall deal with models of power \aleph_1 whose universe sets are ω_1 .

It is not difficult to define a language $|L_1|$, $|L_1| \le |L|$ such that every |L|model M, $|M| = \omega_1$ can be expanded to an L_1 -model M_1 such that

- (1) M_1 has Skolem functions (dependent only on the formula and not on M), and every formula (including sentences) is equivalent to an atomic formula,
 - (2) < is the order on the ordinals, and
 - (3) $P_i^{M_1} = A_i$.

Let T be a theory in the logic from (A) such that every finite $t \subset T$ has a model M^t . Let T_1 be the set of sentences of L_1 holding in M_1^t for tlarge enough. Define an increasing elementary sequence of countable L_1 -models: N_0 will be any countable model of T_1 , $N_\delta = \bigcup_{\alpha < \delta} N_\alpha$ for $\delta < \omega_1$ limit. If N_{α} is defined $N_{\alpha+1}$ will be an end extension of N_{α} (i.e. $N_{\alpha+1} \models a < b \in$ $N_{\alpha} \longrightarrow a \in N_{\alpha}$) such that there is a first element a_{α} in $|N_{\alpha+1}| - |N_{\alpha}|$ and $a_{\alpha} \in P_i \iff \alpha \in A_i$. The proof that this is possible is similar to Keisler [Ke 2],

⁽⁵⁾ Of course, every model with language L has an elementary submodel of cardinality $\leq |L| + \aleph_1$ in this logic.

- [Ke 3]. It is not difficult to check that $\bigcup_{\alpha<\omega_1}N_{\alpha}$ is the required model of T. The proof of the completeness is similar, but T_1 must be defined more carefully.
- (B) The proof is similar to that of (A); here $N_{\alpha+1}$ will be an expansion (as well as an extension) and instead of the demand that $N_{\alpha+1}$ be an end extension, we only need that for all $\delta \leq \alpha$ limit ordinal the type $\{a_i < x : i < \delta\} \cup \{x < a_{\delta}\}$ be omitted.(6)
 - (C) The proof is similar. \Box

The class K_{λ} . After the proof of the previous theorem it is natural to consider the following class of models which is somewhat parallel to the class of κ -like models.

DEFINITION 2.6. Let λ be regular. $M \in K_{\lambda}$ iff < linearly orders $\{x \colon M \models (\exists y)(x < y \lor y < x)\}$ with cofinality λ , and there is a continuous increasing unbounded sequence $\{a_i\}_{i < \lambda}$ (i.e. for all $\delta < \lambda$ limit, the type $\{a_i < x < a_{\delta} \colon i < \delta\}$ is omitted by M).

From the previous theorem follows

THEOREM 2.15. If $|T| \leq \aleph_1$ (T a first-order theory) and every finite $t \subseteq T$ has a model in some K_{λ} , $\lambda > \aleph_0$ then T has a model in K_{\aleph_1} .

It is easily proven that

THEOREM 2.16. If $M \in K_{\lambda}$, $\mu < \lambda$ regular, $|L(M)| < \lambda$ then M has an elementary submodel in K_{μ} .

Somewhat less immediate is the following.

THEOREM 2.17. (A) If for every $n < \omega$ every finite $t \subseteq T$ has a model in some K_{λ} for $\lambda \geqslant \aleph_n$, then T has a model in K_{λ} for all λ .

(B) (Completeness.) The set of sentences true in every model of $K_{\aleph_{\omega+1}}$ is recursively enumerable.

PROOF. Without loss of generality assume that T has Skolem functions. For every ordinal α define

$$\Sigma_{\alpha} = \{ \tau(y_{i_1}, \dots, y_{i_n}) < y_{i_{(k+1)}} \longrightarrow \tau(y_{i_1}, \dots, y_{i_n}) < y_{(i_{k+1})} :$$

$$\tau \text{ is a term of } L(T), i_1 < \dots < i_n < \alpha \}.$$

It is clear that: $T \cup \Sigma_n$ is consistent for all $n \Longleftrightarrow T \cup \Sigma_{\alpha}$ is consistent for all $\alpha \Longleftrightarrow$ for all λ T has a model in K_{λ} ; for if M is a model of $T \cup \Sigma_{\lambda}$

⁽⁶⁾ We should first assume w.l.o.g. that our language L has a countable sublanguage L_1 , such that $L-L_1$ consist of individual constants $\{c_i\colon i<\omega_1\}$, $P(c_i)\in T$; and every finite $t\subset T$ has a model M^t , $|M^t|=\omega_1$, P^{M^t} is finite, and in M^t_1 , every limit ordinal is the universe of a submodel of M^t_1 , and (1)-(3) from the proof of (A) holds.

which is the closure of $\{y_i: i < \lambda\}$ under Skolem functions, then $M \in K_{\lambda}$. Thus it is sufficient to prove:

(*) For all n and all finite $\Sigma'_n \subseteq \Sigma_n$ and all $M \in K_{\aleph_n}$ there are $y_0, \dots, y_{n-1} \in M$ satisfying Σ'_n .

We shall show by downward induction on m < n that:

- (**) There are
- (1) $y_{m+1} < \cdots < y_{n-1}$ (when m = n 1 this is an empty sequence).
- (2) $a_j^m < a_i^m < y_{m+1}$ for all $j < i \le \aleph_{n-m}$, $a_{\aleph_{n-m}}^m = y_{m+1}$ (except when n = m).
- (3) For all $\delta \leq \aleph_{n-m}$ limit ordinal there is no x such that $a_i^m < x < a_{\delta}^m$ for all $i < \delta$.
- (4) If τ occurs in Σ'_n , b_1 , \cdots , $b_k \in \{a_i^m : i < \alpha < \aleph_{n-m}\} \cup \{y_{m+1}, \cdots, y_{n-1}\}$, then $M \models \tau(b_1, \cdots, b_k) < y_{m+1} \longrightarrow \tau(b_1, \cdots, b_k) < a_{\alpha+1}^m$ (if m = n 1 we have instead $M \models \tau(b_1, \cdots, b_k) < a_{\alpha+1}^m$).
- (5) y_{m+1}, \dots, y_n satisfy the corresponding formulas of Σ'_n . Now for m=n choose an increasing unbounded continuous sequence $\{a_i^n\}_{i<\aleph_n}$.

Assume that we have already completed stage m+1, and we shall define for m (for simplicity let m < n) there is a closed unbounded set $S \subseteq \{\alpha: \alpha < \aleph_{m+1}\}$ such that for $\alpha \in S$, $\sigma_1, \dots, \sigma_l \in \{a_l^{m+1}: i < \alpha\} \cup \{y_i: m < i < n\}$, and τ which occurs in Σ_n' we have $\tau(\sigma_1, \dots, \sigma_l) < a_{\aleph_{n-m}}^{m+1} \to \tau(\sigma_1, \dots, \sigma_l) < a_{\alpha}^{m+1}$. Choose $\alpha_0 \in S$ such that $\mathrm{cf}(S \cap \alpha) = \aleph_m$ and define $y_m = a_{\alpha}^{m+1}$. Let $\{\alpha_i: i < \aleph_m\}$ be an increasing unbounded continuous sequence in $S \cap \alpha$ (it is easy to verify that there is such a sequence), and let $a_i^m = a_{\alpha_i}^{m+1}$. (If m=0 there is no need to choose a_i^m , and thus it was sufficient to assume that $M \in K_{\aleph_{n-1}}$.)

THEOREM 2.18. For all $n < \omega$ there is a sentence ψ_n having a model in K_{\aleph_n} but no model in $K_{\aleph_{n+1}}$.

PROOF. ψ_n will more or less characterize $(\omega_n, <)$.

 ψ_0 will say that there is a first element, every element has a successor, and every element (except the first) has a predecessor.

 ψ_{n+1} will say that $\{a: a < c_i\}$ satisfies ψ_i for $i \le n$ (c_i being an individual constant), P_0, \dots, P_n is a partition of the limit elements, and if $a \in P_i$ then $\langle F_i(a, x): x < c_i \rangle$ is an increasing, continuous, unbounded sequence in $\{y: y < a\}$.

Similar theorems may be proved with omitting types as in [Mo 1]. For example if T is countable and has a model in $K_{\aleph_{\omega}}$ omitting a type p, then for all λ T has a model in K_{λ} omitting p.

Problem 2.19. Prove the compactness of K_{\aleph_n} , for $1 < n < \omega$.

REMARK. If we relax the condition of continuity at δ of cofinality ω then we can prove this as in [Sh 1]. Since then the class is closed under ultraproducts of \aleph_0 models. In general it suffices to prove the \aleph_0 -compactness of K_{\aleph_n} .

General questions. A general problem (which is of course not new) about abstract logic is

Problem 2.20. Find the logical connections between the following properties of the abstract logic L^* :

- (A) L^* is first-order logic.
- (B) $_{\lambda}L^{*}$ satisfies the compactness theorem for theories of power $\leq \lambda$.
- (C) = $(B)_{\infty}L^*$ satisfies the compactness theorem.
- (D) L^* satisfies the λ -downward Lowenheim-Skolem theorem. (If $\psi \in L^*$ has a model then ψ has a model of power $\leq \lambda$.)
- (E) L^* satisfies the λ -upward Lowenheim-Skolem theorem. (If ψ has a model of power $\geq \lambda$, then ψ has a model of arbitrarily large power.)
 - (F) L* satisfies Craig's theorem.
 - (G) L* satisfies Beth's theorem.
 - (H) L* satisfies the Feferman-Vaught theorems for
 - (1) Sum of models.
 - (2) Product of models.
 - (3) Generalized product of models.
- (I) L^* satisfies the completeness theorem (assuming that the set of sentences is recursive in the language).

It is known that (A) implies the others; for $\mu < \lambda$ (C) \rightarrow (B) $_{\lambda} \rightarrow$ (B) $_{\mu}$, (E) $_{\mu} \rightarrow$ (E $_{\lambda}$), (D) $_{\mu} \rightarrow$ (D) $_{\lambda}$; (F) \rightarrow (G), (C) \rightarrow (E) $_{\aleph_0}$, (H)(3) \rightarrow (H)(2) \rightarrow (H)(1). Lindenström [Li 1], [Li 2] proved (and Friedman [F 1] reproved).

 $(B)_{\aleph_0} \wedge (D)_{\aleph_0} \longrightarrow (A), (E)_{\aleph_0} \wedge (D)_{\aleph_0} \longrightarrow (A), (F) \wedge (D)_{\aleph_0} \longrightarrow (A).$ The method of proof is by encoding Ehrenfeucht-Fraisse games.

Special questions which look interesting to me are

Problem 2.21. Is there a logic L^* stronger than first-order logic which is \aleph_0 -compact and satisfies Craig's theorem? Do sums of models preserve elementary equivalence for L^* ?

Is there an expansion of $L(Q_{\aleph_1}^{\operatorname{cr}})$ satisfying this? Keisler and Silver showed that $L(Q_{\lambda}^{\operatorname{cr}})$ does not satisfy Craig's theorem. Friedman [Fr 2] showed that Beth's theorem is also not satisfied. Similarly it is not hard to show that all the logics with the quantifiers Q^{cf} , Q^{dc} , Q^{cc} , Q^{st} (all or some of them) do not satisfy Craig's theorem, but satisfy (H)(1). Q^{ss} does not satisfy (H)(1).

Problem 2.22. Does $L(Q_{\aleph_1}^{ss})$ satisfy Craig's theorem, if we restrict ourselves to models of power $\leq \aleph_1$?

Problem 2.23. Find a natural characterization for $L(Q_{\aleph_1}^{cr})$. (For $L_{\infty,\omega}$, $L_{\omega_1,\omega}$, etc. Barwise [Ba 1] found one.)

LEMMA 2.24. Let Q^1 be the quantifier $Q_{\aleph_0}^{dc}$; there is a sentence ψ in $L(Q^1)$, which has only well-ordered models, and has a model of order type α for every $\alpha \ge 2^{\aleph_0}$. (Thus $L(Q^1)$ is not compact.)

PROOF. Let ψ_1 say:

- 1. P_1 , P_2 , P_3 , P_4 (one place predicates) are a partition of the universe.
- 2. \leq is a total order of the universe, S is the successor function in P_1 and P_2 (so P_1 and P_2 are closed under S) and each P_i is a convex subset.
 - 3. F is a one place function mapping P_3 into P_2 .
 - 4. G is a two-place function from P_3 to P_1 and

$$(\forall x \in P_3)(\forall y \in P_3)(\forall z \in P_1)[S(z) \leqslant G(x, y) \land x < y \equiv (\forall v \in P_2)(\exists x', y' \in P_3)$$

$$(x < x' < y' < y \land \varphi(x', y', v) \land z \leqslant G(x', y'))]$$

where
$$\varphi(x, y, z) = P_3(x) \wedge P_3(y) \wedge P_2(z) \wedge x < y \wedge (\forall v)(x < v < y \longrightarrow z < F(v))$$

- 5. $(\forall z \in P_1)(\exists x, y \in P_3)(x < y \land G(x, y) = z)$.
- 6. The cofinality of P_2 is \aleph_0 (just say F is an anti-isomorphism from (P_2, \leqslant) onto (P_4, \leqslant) , and

$$(Q^{1}xy)[(P_{2}(x) \lor P_{4}(x)) \land (P_{2}(y) \lor P_{4}(y)) \land x < y]$$
$$\land (Q^{1}xy)(P_{2}(x) \land P_{2}(y) \land x < y)$$

7. $(Q^1xy)(P_3(x) \land P_3(y) \land x < y)$.

Suppose $M \models \psi_1$ and c_n is a strictly decreasing sequence in P_1^M ; let d_n $(n < \omega)$ be an increasing unbounded sequence in P_2^M , and define inductively $x_n, y_n \in P_3^M, x_n < x_{n+1} < y_{n+1} < y_n$, and $G(x_n, y_n) \geqslant c_n$, and $\varphi(x_{n+1}, y_{n+1}, d_n)$. For n = 0 use 5, for n + 1 use 4. So by φ 's definition for no $z, x_n < z < y_n$ for every n (as then F(z) cannot be defined); contradicting 7). So in every model of ψ_1, P_1 is well-ordered. Now we define by induction on α orders I_{α} and functions $F_{\alpha}: I_{\alpha} \to \omega$ as follows:

 I_0 is \aleph_1 -saturated order of cardinality 2^{\aleph_0} ; $\overline{F_0}$ is constantly zero.

 $I_{\alpha+1} = \{\langle i, a \rangle : i \in \omega + 1, a \in I_{\alpha} \}$ ordered lexicographically.

 $F_{\alpha+1}(\langle i, a \rangle) = F(a) + i$ for $i < \omega$, and zero otherwise.

 $I_{\delta} = \{ \langle \alpha, a \rangle : \alpha \leq \delta + 1, a \in I_{\alpha} \}$ ordered lexicographically.

 $F_{\delta+1}(\langle \alpha, a \rangle) = F_{\alpha}(a)$ for $\alpha < \delta$, and zero otherwise. Now we can easily define $M^{\alpha} \models \psi_1$, $P_1^{M^{\alpha}} = 1 + \alpha$, $P_2^{M^{\alpha}} = \omega$, $P_3^{M^{\alpha}} = I_{\alpha}$, $F^{M^{\alpha}} \supset F_{\alpha}$, $P_4^{M^{\alpha}} = \omega^*$. The change to ψ is now only technical.

Added in proof. 1. Schmerl, in a preprint "On κ -like structures which embed stationary and closed unbounded subsets" proved interesting results on problems closely related to $(Q_{\lambda}^{st}x)$.

- 2. The author proved that a variant of Feferman-Vaught theorem and Beth theorem implies Craig theorem. This and other results will appear.
- 3. Why do we use $Q^{cf}_{\{\aleph_0,\kappa\}}$, $Q^{dc}_{\{\aleph_0,\kappa\}}$, and not just $Q^{cf}_{\{\aleph_0\}}$, $Q^{dc}_{\{\aleph_0\}}$ in Definition 1.4? (Note that $Q^{cf}_{\aleph_0}$ is added just for convenience.)

REFERENCES

- [Ba 1] K. J. Barwise, Absolute logics and $L_{\infty,\omega}$, Ann. Math. Logic 4 (1972), 309–340.
- [Ch 1] C. C. Chang, Two refinements of Morley's method on omitting types of elements, Notices Amer. Math. Soc. 11 (1964), 679. Abstract #64T-449.
- [Ch 2] ——, A note on the two cardinal problem, Proc. Amer. Math. Soc. 16 (1965), 1148-1155. MR 33 #1238.
 - [CK] C. C. Chang and H. I. Keisler, Model theory, North-Holland, Amsterdam, 1973.
- [EM] A. Ehrenfeucht and A. Mostowski, Models of axiomatic theories admitting automorphisms, Fund. Math. 43 (1956), 50-68. MR 18, 863.
- [Fr 1] H. Friedman, Why first order logic, Mimeographed Notes, Stanford University, 1970.
 - [Fr 2] ——, Beth theorem in cardinality logic, Israel J. Math 14 (1973), 205-212.
- [FV] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57-103. MR 21 #7171.
- [Fu 1] G. Fuhrken, Languages with added quantifier "there exist at least \aleph_{α} ", Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 121-131. MR 39 #2624.
- [Ha 1] W. Hanf, Incompactness in languages with infinitely long expressions, Fund. Math. 53 (1963/64), 309-324. MR 28 #3943.
- [He 1] M. Helling, Hanf numbers for some generalizations of first-order languages, Notices Amer. Math. Soc. 11 (1964), 670. Abstract #64T-448.
- [Hn 1] L. Henkin, Some remarks on infinitely long formulas, Infinitistic Methods (Proc. Sympos. Foundations of Math, Warsaw, 1959), Pergamon, Oxford; PWN, Warsaw, 1961, pp. 167-183. MR 26 #1244.
- [Je 1] R. Jensen, The fine structure of the constructible heirarchy, Ann. Math. Logic 4 (1972), 229-308.
 - [JK] R. Jensen and K. Kunen, Some combinatorial properties of L and V (notes).
- [Ke 1] H. J. Keisler, Some model theoretic results for ω -logics, Israel J. Math. 4 (1966), 249-261. MR 36 #4974.
- [Ke 2] ____, Logic with the quantifier "there exist uncountably many", Ann. Math. Logic 1 (1970), 1-93. MR 41 #8217.
- [Ke 3] ———, Models with tree structures, Proc. Sympos. Pure Math., vol. 25 Amer. Math. Soc., Providence, R. I., 1974, pp. 331-348.
- [KM] H. J. Keisler and M. D. Morley, Elementary extensions of models of set theory, Israel J. Math. 6 (1968), 49-65. MR 38 #5611.
- [KR 1] H. J. Keisler and F. Rowbottom, Constructible sets and weakly compact cardinals, Notices Amer. Math. Soc. 12 (1965), 373-374. Abstract #65T-186.
- [Ku 1] D. W. Kueker, Löwenheim-Skolem and interpolation theorems in infinitary languages, Bull. Amer. Math. Soc. 78 (1972), 211-215. MR 45 #36.
- [Le 1] A. Lévy, Axiom schemata of strong infinity in axiomatic set theory, Pacific J. Math. 10 (1960), 223-238. MR 23 #A1522.
- [Li 1] P. Lindström, First order predicate logic with generalized quantifiers, Theoria 32 (1966), 186-195. MR 39 #5329.
- [Li 2] ———, On extensions of elementary logic, Theoria 35 (1969), 1-11. MR 39 #5330.
- [MA 1] M. Magidor and J. I. Malitz, Compact extensions of L^Q , Notices Amer. Math. Soc. 20 (1973), A-501. Abstract #73T-E79.

- [MK 1] J. A. Makowsky, On continuous quantifiers, Notices Amer. Math. Soc. 20 (1973), A-502. Abstract #73T-E84.
- [Mo 1] M. D. Morley, Omitting classes of elements, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 265-273. MR 34 #1189.
- [MS 1] A. Mostowski, On a generalization of quantifiers, Fund. Math. 44 (1957), 12—36. MR 19, 724.
- [MV] M. Morley and R. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57. MR 27 #37.
- [Si 1] J. Silver, Some applications of model theory in set theory, Ann. Math. Logic 3 (1971), 54-110.
- [Sc 1] J. H. Schmerl, An elementary sentence which has ordered models, J. Symbolic Logic 32 (1972), 521-530.
- [Sh 1] S. Shelah, Two cardinal compactness, Israel J. Math. 7 (1971), 193-198; see also Notices Amer. Math. Soc. 18 (1971), 425. Abstract #71T-E15.
- [Sh 2] ——, On models with power like orderings, J. Symbolic Logic 37 (1972), 247-267.
- [SS] J. H. Schmerl and S. Shelah, On power-like models for hyperinaccessible cardinals, J. Symbolic Logic 37 (1972), 531-537. MR 47 #6474.
- [TR 1] L. H. Tharp, The uniqueness of elementary logic, Notices Amer. Math. Soc. 20 (1973), A-23. Abstract #73T-E83
- [Va 1] R. L. Vaught, *The Löwenheim-Skolem theorem*, Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Cong.), North-Holland, Amsterdam, 1965, pp. 81-89. MR 35 #1461.

INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY, JERUSALEM, ISRAEL